skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sheikholeslami, Azadeh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Today's information society relies on cryptography to achieve security goals such as confidentiality, integrity, authentication, and non-repudiation for digital communications. Here, public-key cryptosystems play a pivotal role to share encryption keys and create digital signatures. However, quantum computers threaten the security of traditional public-key cryptosystems as they can tame computational problems underlying the schemes, i.e., discrete logarithm and integer factorization. The prospective arrival of capable-enough quantum computers already threatens today's secret communication in terms of their long-term secrecy when stored to be later decrypted. Therefore, researchers strive to develop and deploy alternative schemes.In this work, we evaluate a key exchange protocol based on combining public-key schemes with physical-layer security, anticipating the prospect of quantum attacks: If a powerful quantum attacker cannot immediately obtain a private key, legitimate parties have a window of short-term secrecy to perform a physical-layer jamming key exchange (JKE) to establish a long-term shared secret. Thereby, the protocol constraints the computation time available to the attacker to break the employed public-key cryptography. In this paper, we outline the protocol, discuss its security, and point out challenges to be resolved. 
    more » « less
    Free, publicly-accessible full text available March 19, 2026